

EUR19_38 - Big data for Operations: from use case to Insights

Victor Brissot, SNEF Jean-Baptiste Léger, SNEF Jean-François Rauch, Air Liquide

3 use cases will be presented in this Tutorial:

- SNEF: IoT design for TOTAL Refinery
- SNEF: Predictive algorithms development for Neste Oil plant
- AIR LIQUIDE: Smart Innovative Operation

Introduction

1. **SMART INDUSTRY** APPLIED TO REFINERIES

R&D contract for TOTAL VICTOR BRISSOT MIOS BY SNEF LAB

2. **PREDICTIVE** MAINTENANCE

for Industry 4.0 Jean Batiste LEGER PREDICT by SNEF Lab

SMART INDUSTRY APPLIED TO REFINERIES

R&D contract for TOTAL

R&D CONTRACT FOR TOTAL

INTERFERENCE STUDY

 Radio and weather interference study

DEVICE DEVELOPMENT & CERTIFICATION

- Specifications
 from Final Customer
- Results
- Focus on security Secure Element, added encryption
- Atex certificate
 from Ineris

Architecture

R&D CONTRACT FOR TOTAL

Gas leak detection focus

Monitoring the differential between pipe's surface and ambient temperature for gas leak detection.

S.box ATEX

- Zone 1 certified
- More than 5 years autonomy
- Thermocouple sensors
- Multiple sensors on the same device
- Autonomous solution

R&D CONTRACT FOR TOTAL

COVERAGE STUDY

- On-site study to determine how many gateway will be needed
- Will be applied to every French refinery within 2 years
- Include captures from deliverable of refinery

INDUSTRIAL DEPLOYMENT

- 3 refineries already covered by private LoRa Network
- 50 devices deployed

Keys assets for Total

SECURITY

- Dedicated Private IoT network
- Data encryption over LoRaWAN built-in encryption
- Embedded Secure Element

INTEROPERABILITY

- LoRaWAN compliant network and devices
- Multiple use cases addressed by an open solution

PREDICTIVE MAINTENANCE

for Industrie 4.0

Neste Oil

FOSSIL FUEL REFINERY

The refinery concentrates on specialty products, such as solvents and bitumen, and has a capacity of approx. 3 million t/a.

- CRUCIAL FACTOR FOR THE
 OPERATION ECONOMY Continuous
 optimisation of the production processes.
- **OBJECTIVE** Increasing the plant availability by improving the equipment fault detection and by more efficient handling of the consequent process disturbances is one way for optimising the production.
- **INNOVATION** Coupling in real time Fault Detection and Isolation (FDI) and Fault Tolerant Control (FTC)

Innovative approach

ACQUISITION

- · To acquire data from the Local Application
- To integrate into the Real Time Database

FAULT DETECTION

• To detect fault and drift behaviour

DIAGNOSIS

To identify cause(s) and probability

PROGNOSIS

- To determine consequence(s) and risk
- To extrapolate variable value in the future

FAULT TOLERANT CONTROL

- To calculate accommodation value(s)
- To apply FTC action(s) with a pre-defined ordering sequence

INPUT

On-line process measurement from the database in the process computer

Only during the development

- Simulated data from PROSimulator
- Off-line Process data

OUTPUT

FDI information giving the time of occurrence and location of faults. The software should also estimate quickly the deviation direction and its size, fault severity, and FDI reliability index.

Active FTC

ALGORITHMS

Pursuing to handle the faults by individual strategies for each piece of process equipment considered (e, g, process on-line analyzers).

Innovative approach

PREDICTIVE MAINTENANCE

Software interface with DCS

PREDICTIVE MAINTENANCE

FTC Strategy Approaches

FDI / FTC Strategy #1

FDI m1

· Fault is detected

FTC m1

- · Measurement feedback is turned off
- Calculation of the accommodation target value
- CV target value is increased by 7 °C

FTC Strategy #3

FDI m3

Fault is detected

FTC m3

· Measurement feedback is turned off

FDI/FTC Strategy #2

FDI m2

· Analyser measurement turns healthy

FTC m2

- · Measurement feedback is turned back on
- CV target value is returned back to its original value (212 °C)

FTC Strategy #4

FTC m4

· Measurement feedback is turned back on

FDI m4

 Once the analyser measurement becomes healthy

FTC Algorithm Model

Early warning visualisation & location

PREDICTIVE MAINTENANCE

Application to Analysers

Analyser fault.

MV (distillation column temperature setpoint) and CV (initial boiling point target value) values.

Use Cases

2

1

201

Fault

-Reliability

Date

251

Action

Analyzer upward drift case

Flash Point downward fault case

CONCLUSIONS

Introduction - Use case N°3

Smart & Innovative Operation

Why Air Liquide is doing **SIO**?

WW Electrical Consumption ≈ 4 GWatt

French production : Average Consumption 300 MWatt Average Generation 35 MWatt

What is **SIO**?

DIGITAL TECHNOLOGIES TO LEVERAGE DATA

Data as an Asset Centralized data driven decision making

ORGANIZATIONAL TRANSFORMATION

New roles, career paths, competencies and new ways of working

ENHANCE OUR RELATIONSHIP WITH OUR CUSTOMER

How to achieve **SIO** Transformation

New Types of Roles Through SIO we are able to add new and exciting roles and opportunities for our teams globally

COOD : 15 PTR (2 / shift) Analyst (4 ASU, 3 HyCo, 1 IT), Energy 3, Supply Chain 2 (Bulk dispatch)

ROCC PILOTS Remote Monitoring & Operations through Service Level

Agreements (SLA)

- Monitor and respond to alarms
- Equipment List and Process Variables Authorized for RTP response
- Communicates in real time with customers regarding their consumption

LEAD CENTER ANALYSTS

Data Analytics & Case Management

- Uses data analytics to monitor for areas for improvement using smart KPIs
- Case managers for issues that are detected
- Optimizes up to 20 plants or more remotely, performing predictive analytics on key equipment
- Supports the preparation of the production & the energy strategy to meet the customer's demand.

- Specific skill set
- Extended working hours and call outs due to operational inefficiencies
- Analytical and multi-skilled
- Utilizes data for optimized decisions
- Can monitor and control remotely

Remote Control a new flow : write access of the PI system

2.Focus on SIO.Predict

Accueil État de l'actif Alarmes	Panneau indicateur	Liste de contrôle	Rapports	Explorateur	Comparaison Des Comp
ALFI Nord & Ouest					
Nom	Allocations $\overline{\mathbb{Y}}$	Etat d'alarme	État courant	Historique des événements sur jours (jours)	7 Ètat des Incidents In
LI-FR-DUNK-1000T-P51A-PUMP-80040	ALFRGIS\Frederic.\ ERPILLAT	v 🜔			
LI-FR-PORT-CROYCAP-C773-MOTOR		9			
LI-FR-DUNK-DK-ASU-C20-PROCESS	ALFRGIS\Frederic.\ ERPILLAT	v 🧭			
LI-FR-DUNK-DK-2000T-C02-MOTOR-80197	ALFRGIS\Frederic.\ ERPILLAT	v 🜔			
LI-FR-MOIS-C1-PROCESS-320162		0			
LI-FR-MOIS-C2-GEARBOX-320163		ŏ	4		
LI-FR-MOIS-C2-MOTOR-320160		ŏ	-		
LI-FR-DUNK-LIQUE-D61-EXPBM-80427	ALFRGIS\Frederic.\ ERPILLAT	v O			-
LI-FR-DUNK-DK-ASU-TURB02-MOTOR		0	A		0
LI-FR-DUNK-DK-ASU-TURBO1-MACHINE	ALFRGIS\Frederic.V ERPILLAT	v O			
LI-FR-DUNK-DK-1000T-C40-PROCESS-80005		0	•		
LI-FR-DUNK-1000T-P51B-PUMP-80041		0	٠		
LI-FR-DUNK-1000T-P51C-PUMP-80042		0	•		
LI-FR-DUNK-1000T-P51D-PUMP-80043		0	۲		
LI-FR-DUNK-DK-2000T-C02-MACHINE-80195		0	٠		
LI-FR-DUNK-DK-2000T-C02-OIL-84012		0	٠		
LI-FR-DUNK-DK-2000T-C02-PROCESS-80195		0	٠		
LI-FR-DUNK-2000T-D01-EXPBM-80198		0	•		
LI-FR-DUNK-DK-2000T-P03A-PUMP-80221		0	٠		
LI-FR-DUNK-DK-2000T-P03B-PUMP-80222		0	٠		
LI-FR-DUNK-2000T-P01A-PUMP-80219		0	•		
LI-FR-DUNK-2000T-P01B-PUMP-80220		0	•		
LI-FR-DUNK-DK-2000T-P04-PUMP-80243		0			
LI-FR-DUNK-DK-2000T-P10-PUMP-80193		0	٠		
LI-FR-DUNK-DK-ALADIN-P02-PUMP-1190055		0	•		

SIO.Predict - Principle

- Clusters between parameters (Multi-dimensional)
- Historical data (1-2 years) = "normal" behavior

- Deviation to the normal behavior to be analyzed (Weak signal)
- Early Warning = Time to React

SIO.Predict - Catches - Main Air Compressor

- Correlated parameters used in the model : oil temp, all bearing vibrations and temp and compressor load
- Training of the model : Nov 15 -Aug16
- No alarm from the DCS

SIO.Predict in numbers

- 2014 R&D survey of different products
- **2015** PoC with a first software solution (4 plants)
- 2016 second software 16 licences
- 2017 deployment the solution ww
- Today Global Agreement for 2nd software

COOD 200 Machines (500 Models) 200 alarms/month 3 Full time + 2 PTR 1 h/shift

- 145 sites licensed
- 3850 models deployed
- 38 countries
- 130+ people trained
- 280+ actioned catches

SIO.Predict Lessons

Deployment Fast

Strong Management support Cloud + PI central server easy to connect Template (tag, alarm...)

Indirect Savings

Reduce Maintenance (Shorter TAR, reduce OEM supervision)

Few "Big" Catches

Instrumentation (50%), **Mechanical** (Bearing, Oil Cooler), Efficacity (Approach Temperature)

Best Practices

Small projects with high correlated parameters (Compressor Mechanic, Comp Process, Comp Motor, Comp Oil System)

Lack of instrumentation

Auxiliary / Main Oil Pump Reciprocating Compressor Fan, Cryo Pump

Break very fast

Impossible to anticipate (-> Maintenance policy is still needed)

No Alarm or Alarm not treated in time

Ratio of fake alarm still high (75%) Discontinue Alarm (Persistence)

> Next : Decision Support System for Alarming Automatic Ranking

SIO.Perform.504

CAR

Speed 120 km/h Benzin consumption 7.2 l / 100 km Atmospheric Temperature 31°C Gear 5 / 6 Road slope +2.5/1000 Front wind 12 km/h Car weight 800 kg Additional weight 722 kg Tire Pressure 2.1 bar Air conditioning ON SP = 21 °C Windows front Closed Windows back open 25% Land Motor Settings Oil Filter Plugged

Landscape?

Plant / Adjustable Parameters?

SIO.Perform.504.KPI

CAR

Speed 120 km/h Benzin consumption 7.2 l / 100 km Atmospheric Temperature 31°C Gear 5 / 6 Road slope +2.5/1000 Front wind 12 km/h Car weight 800 kg Additional weight 722 kg Tire Pressure 2.1 bar Air conditioning ON SP = 21 °C Windows front Closed Windows back open 25% Motor Settings Oil Filter Plugged

KPI

Opex : what has been to be paid to achieve the task/duty

KPI = Consumption * Gas_Cost

SIO.Perform.504.Landscape

CAR

Speed 120 km/h *** Benzin consumption 7.2 l / 100 km Atmospheric Temperature 31°C Gear 5 / 6

Road slope +2.5/1000 Front wind 12 km/h

Car weight 800 kg Additional weight 722 kg

Tire Pressure 2.1 bar Air conditioning ON SP = 21 °C Windows front Closed Windows back open 25% Motor Settings Oil Filter Plugged

The duty/task produced

&

Landscape

The environmental condition that can not be adjusted (but have an impact on the KPI)

data optimized by SIO.Optim
 Output from SIO.Optim (Variables)
 Input for SIO.Perform (Landscape)

SIO.Perform.504.Plant Parameters

CAR

Speed 120 km/h Benzin consumption 7.2 l / 100 km Atmospheric Temperature 31°C Gear 5 / 6 (L1) Road slope +2.5/1000 Front wind 12 km/h Car weight 800 kg Additional weight 722 kg Tire Pressure 2.1 bar (L2) Air conditioning ON SP = 21 °C (L1) Windows front Closed (L1) Windows back open 25% (L) Motor Settings (L3) Oil Filter Plugged (L3)

Plant / Adjustable Parameters The internal parameter that can be adjusted to improve the efficiency

L1 : ROCC / control room level L2 : "easy/small" maintenance L3 : "big" maintenance

SIO.Perform : Air Separation Unit

- **KPI** : What the plant has to pay to produce
 - Electricity Bill (Electricity Consumption * Electricity Price)
- Landscape : the duty/production of the plant
 - Separation (the distillation part)
 - High_Pressure_GOX_Flow + LOX_Flow
 - Liquefaction (to produce Cryogenic Liquid: LIN, LOX, LAR)
 - LIN_Flow + 1.07 * LOX_Flow + 0.9 * LAR_Flow
 - Compression (High Pressure Gaseous, Network 40 bars to 120 bars)
 - Theoretical Energy of Compression of all Products

SIO.Perform : Second principle

 Principle 2 : List of adjustable parameters to reach Historical better Performance (Operator support, OCC analyst)

SIO.Perform in numbers

- 45 plants deployed
- 25+ countries
- **100+ people trained** (G+ community)
- 36+ actioned catches

Catches reported

- Manual Valve (not open, not closed) after TAR
- Improper SetPoint (BIAS)
- Valve Leaking (Anti-Surge)
- Compressor efficiency (Cooler..)

Organisation

- Analyst <-> Subject Matter Expert
- Analyst <-> Site Local Champion

COOD (8 plants): 6 analysts follow weekly all KPI on Perfom (Hyco + ASU)

4.Focus on SIO.Optim

What is the Core Engine - SIO.Optim?

43

Build a model with the Core Engine

1. Select the required bricks

Build a model with the Core Engine

2. Build the schema of the plant (or network ...)

SIO.Optim in numbers

Real Time Optimization (Open loop -> decision support or close loop -> link with DCS) -> OCC, sites operation

Liquid production plan -> OCC

Conclusions and Q&A

LARGE INDUSTRIES: production numbers

Activities

