

EUR 19_36 - Development of Digitization in Oil & Gas Engineering Processes

Nathalie Cabresin, Saipem Cecile Gaudeaux, Air Liquide Hans Keller, Siemens Jean-Charles Guilhem, 2B1st Consulting

- Part 1: Saipem Use Case
 - Digitization in Oil & Gas Engineering Processes
- Part 2: Lesson learnt
 - Roadmap for Digitization

Part 1: Use Case

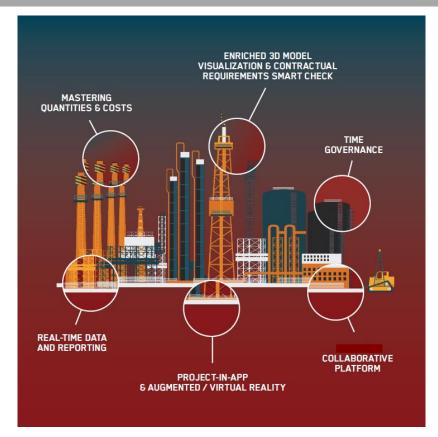
Development of Digitization in Oil & Gas

Engineering Processes

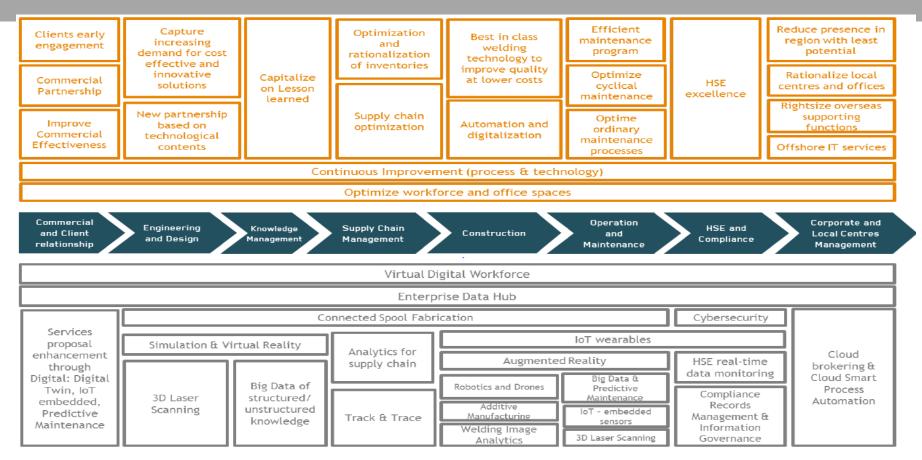
Nathalie CABRESIN

Oil & Gas Process Technologies Department Manager

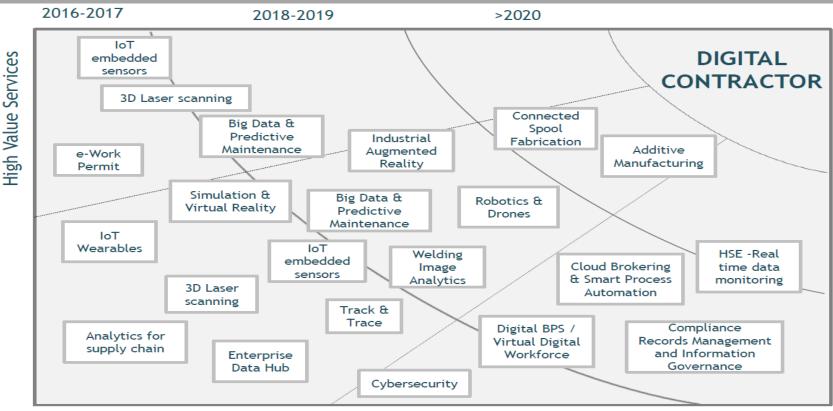
SAIPEM



- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools


1-Digital Transformation for an EPCI Contractor

Opportunities of digital for EPCI contractor and engineering activities are double:


- collaborative platform
- digital twin

1-Digital Transformation for an EPCI Contractor

1-Digital Transformation Reality

Engineering & Construction

Corporate Activities & Global Functions

- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools

2-Evolution of Engineering Methods

History of Engineering Methods

1990's	2010	2018	
Document Centric Approach	Mixed Document and multiple, siloed Software Approach	Integrated Data Centric Approach (documents are generated from Data)	
Central Computer	Personal Computer + Servers	Web Applications + Cloud	
Manual Datasheets on tracing paper	Excel Datasheets	Digital Datasheets within the 1D Database	
Manual Calculation Sheets Use of graphic charts (pressure drop calculations, line sizing)	Excel Calculation Sheets	Digital Calculation Sheets within the 1D Database	
Drafted P&IDs (Autocad or Microstation)	Intelligent P&IDs (SP PID)	Integrated P&IDs with 2D Database and 3D Model	
2D drawings and hard model	CAD 3D Model	Integrated 3D Model with P&IDs and 1D Database (lists)	
Comments of Vendor documents on paper copies	Comments of Vendor documents by Red Lining on PDF files	Sharing of Project Databases with Partners, Sub-Contractors and Vendors	
Paper documents handover to COMPANY (one entire storage room)	Electronic Document Management System (native + PDF files) + 3D Model (native Database)	Progressive Data and Document handover to COMPANY (Digital Twin, Information Visualization Portal)	

2-Drivers for Engineering Methods evolution

- Requests from clients: More calculations and studies, Imposed softwares, imposed data format, 3D Model, Digital Twin, spare parts management...
- Requests from multicenters accessibility to data
- EPCI competition
- Need for continuous improvement and innovation
- Internal initiatives (Calculation Sheets, Calculation Tools, Databases...)
- Internal Innovation, Research & Development effort
- ICT Department Development of internal Tools
- New Commercial software releases

2- Key factors of Engineering Methods Evolution

- Work in a moving environment with compromises
- Select the good software at the right moment (privilege commercial software rather than internal development)
- Cost / Benefit evaluation
- Make choices based on priorities and business imperatives
- Management of project changes
 - Strong Top Management commitment
 - Dedicated transversal teams covering the E, P, C, I chain
 - Imply involved Disciplines
 - Training of Administrators and Users
 - Configuration and customization of the Tools to your own work processes, with the assistance from Software Editor or ICT. Each implementation of a structuring Tool such as Engineering Authoring Tools, an ERP or MSCM is unique.

- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools

3- Data sources

- Manual Input (Lists, Data Sheets...)
 - Free input (Design conditions...)
 - Pick-Up List (Piping Class, Material...)
 - Reference to an Item of another List
- Calculation Tools output (Steady State Simulation (H&MB), Dynamic Simulation, Stress Calculation...)
- Catalogues (Piping Spec, Commodity Codes, Ident Codes, Dimensions, Weight, Vendor data...)
- 2D & 3D CAD Tools (Relations, Location, Weight, CoG)
- > 3D Laser Scanning (Brownfield projects)
- Document metadata
- 4D (Planning & Schedule) and 5D (Cost) data from Business Tools
- Geographical Data (GIS, GPS, real time...)
- 6D Maintenance & Operation Sensors (Plant in operation)

3- Digital Collaborative Environment

Authoring (Data Responsibility & Ownership)

Certified Data Traceability

Real Time Data Sharing

Integration of Design Software Tools

Real Time Clash Detection

Real Time Enriched Plant Visualization

Integration of Schedule and Cost

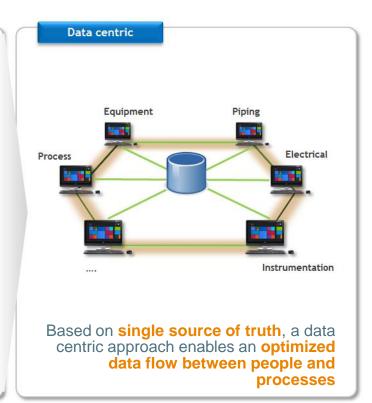
Real Time Project Monitoring

Key Dimensions

- 1D Real Time Collaborative Environment
- 2D Real Time Data and Reporting
- 3D Enriched 3D Model Visualization
- 4D Time Governance
- 5D Smart Object Lifecycle
- 6D Project-in-App & Augmented/Virtual Reality

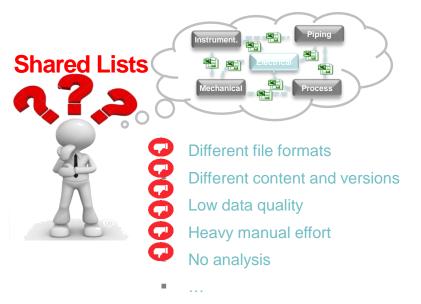
Digital Warehouse and Material Tracking Subcontractor Monitoring Integrated Procurement (linked to the Model) Real Time Work Front Analysis Real Time Data Reporting (Dashboard) Accounting System Integration Real Time Manhours estimation

- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools

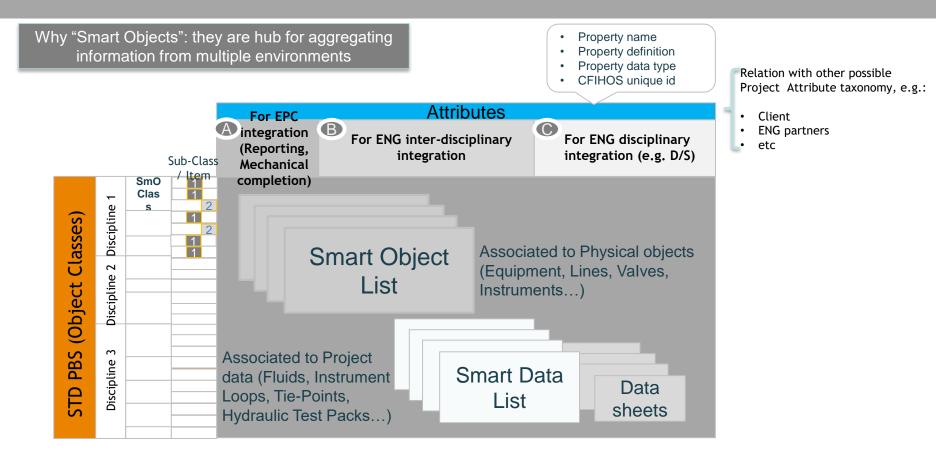

4- EPCI Contractor Project Information Management Plan

- Information Management and ICT Organization Chart
- Selection of Engineering, Business, Data Warehouse and Data Analysis/Visualization software
- Project Execution Management tools (Material Supply Chain Management, Reporting (xD information), Fabrication, Mechanical Completion)
- Exchange of Data between software and Engineering Workflows
- Data Quality Management
- Data Change Management
- Integration of Partner, Sub-Contractor and Vendor Data
- Collaborative approach, Project Visualization Portal
- Handover to COMPANY

4- Data extracted from Documents


Documents generated from Data

4- Digital Lists vs Shared Excel File Lists

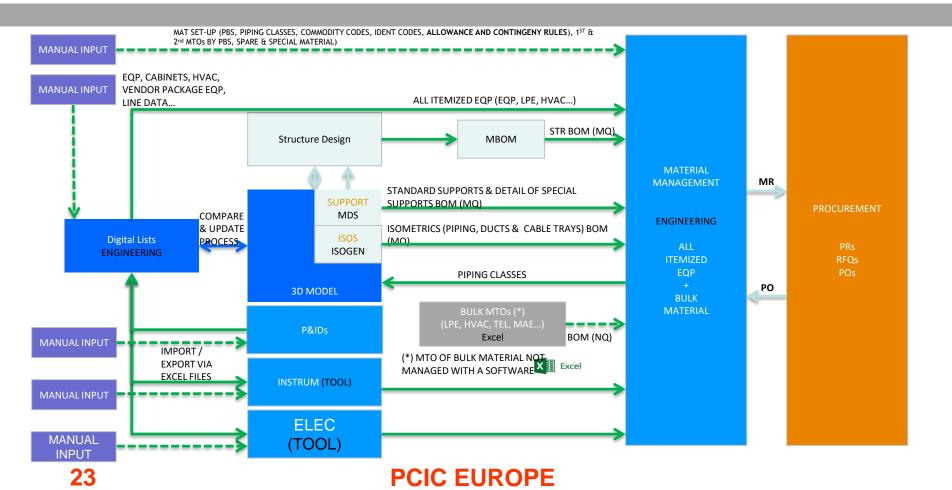

Moving from uncontrolled shared Excel file Lists to a controlled shared Database managing Digital Lists

- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools

5- EPCI Contractor Data Model

5- EPCI Contractor Data Model

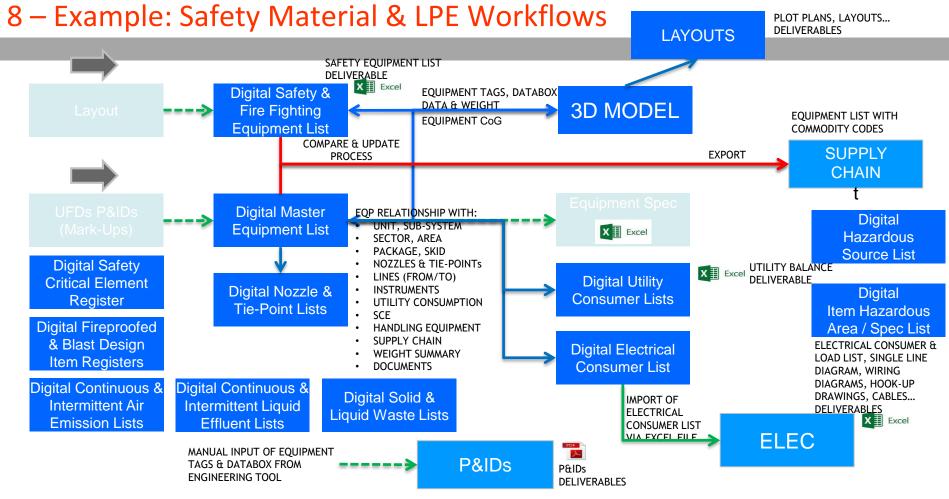
- Asset material break through in Classes and Sub-Classes by discipline
- Item tagging procedure as per Client requirement
- Attributes classification
- Classification of attributes per owner discipline (role)
- > Attributes specific to EPCI Execution:
 - Smart Object Maturity (Level of Development) status
 - HOLD Log, Variation Log, Management of changes (revision, status)
 - Design, Procurement and Installation Responsibility


•	PBS,	WBS
---	------	-----

• Planning, Cost

Basic		Front End	Detailed Engineering			
Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7
Conceptual	Basic Process	Basic Engineering	Design summary and validation	Engineering for Procurement	Engineering for Construction	Engineering during Construction
Identification, definition and functional analysis of primary and secondary systems.	Process specifications and functional specifications of the constituent elements of the systems.	Design of the constituent elements of the systems with reference to constructability and safety.	Completion and technical- economic optimization of design and plant engineering aspects of the systems.	Definition of the scope of supplies. Technical bid evaluation, issue of orders and follow-up. Çlear all the de	Issue of documentation valid for construction.	Documentation follow-up during construction, precommissioning, commissioning and start-up.
HOLDs	chasing	First Gate M FEED Compl UROPE	ilestone: etion Seco	issues and HOL ond Gate Milesto ore massive issu	one:	

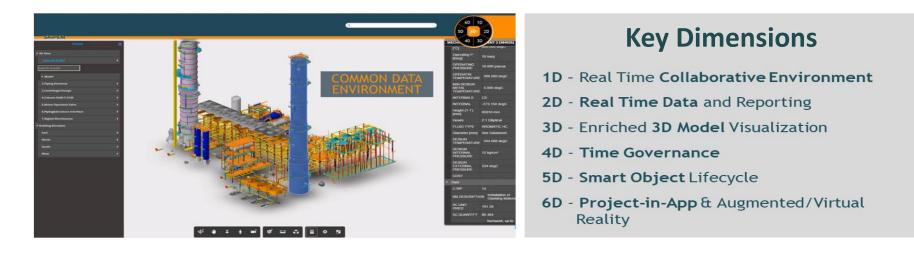
- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools


6- Project Information & Supply Chain Management with Mixed engineering tools environment

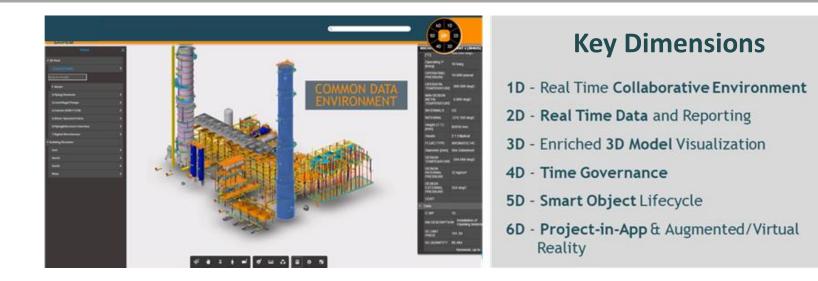
6- Objectives in using Engineering tool

- > Make a day-to-day engineering tool used by everyone, anywhere
- Manage through Engineering tool Project Digital Lists, covering Engineering, Procurement (Material Requisitions) and Construction (Mechanical Completion) needs,
- Manage Process, Safety, Mechanical, Instrumentation Digital Data Sheets, starting from most numerous and common equipment: Pumps, Drums, Filters, HEs, ON/OFF Valves, CVs, PSVs, FTs, ROs, Analyzers, bulk material...
- Exchange and interconnect informations to lists, MDR, 3D Models...
- Keep compliant with Engineering work processes an EPCI contract execution

- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools



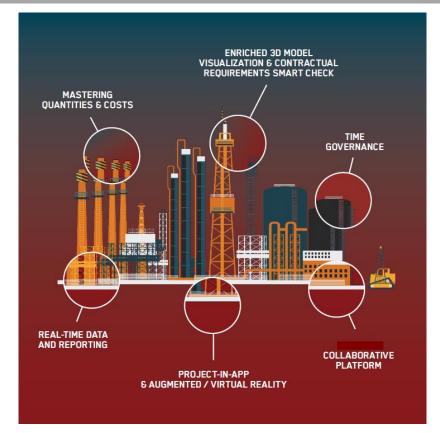
26


- 1. Digital Transformation for an EPCI Contractor
- 2. Evolution of Engineering methods
- 3. Data sources and Digital Collaborative Environment
- 4. EPC Contractor Project Information Management Plan and Engineering Digitalization
- 5. EPC Contractor Data Model
- 6. Objectives and Configuration of Engineering data Management tool.
- 7. Digital Lists, DS and Work Processes
- 8. Integration with Business Tools

8 – Project Life-Cycle Management Methodology

The vision is to build a common **digital and data-centric collaborative methodology for the management of the entire project life-cycle**, that stores and processes the entire project data and conjugates it in multiple different dimensions, according to the different activities and operations performed by all the stakeholders along the full project life-cycle.

8 – Engineering Digitization Key Features



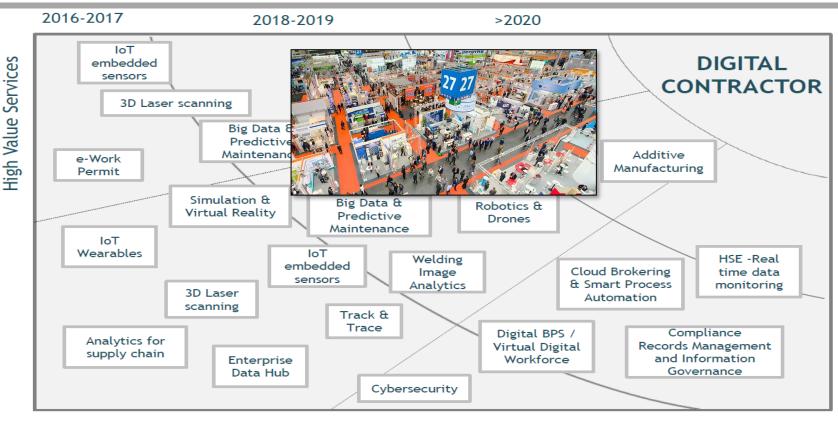
- Digital collaborative platform integrating stakeholder's activities, all along full project life-cycle
- Data centric methodology inducing redefinition of work processes
- Real time decision and continuous hand over to client

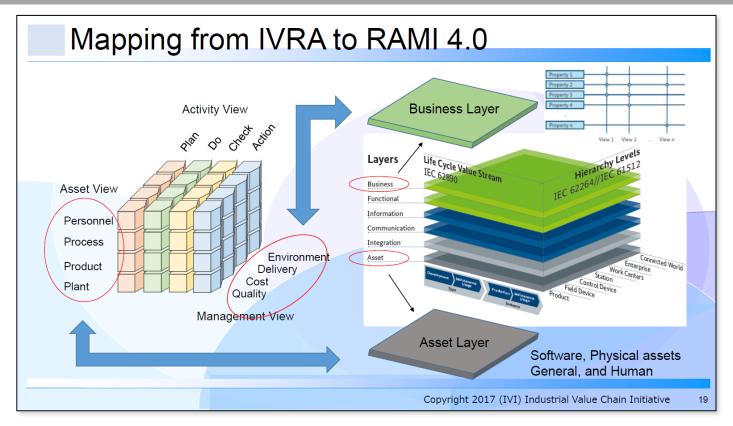
Use Case Conclusion

Opportunities of digital for EPCI contractor and engineering activities are double:

- collaborative platform
- digital twin

Part 2: Lesson Learnt Road Map to Digitization




Digitization Technologies are Available

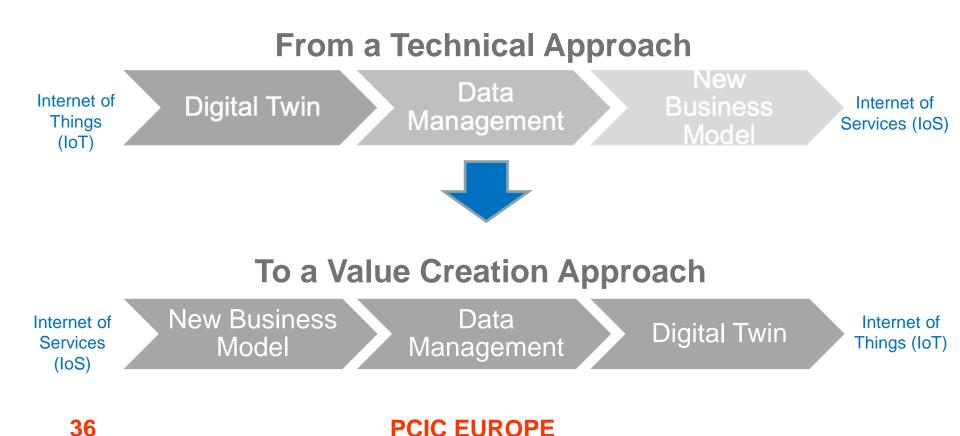
Engineering & Construction

Corporate Activities & Global Functions

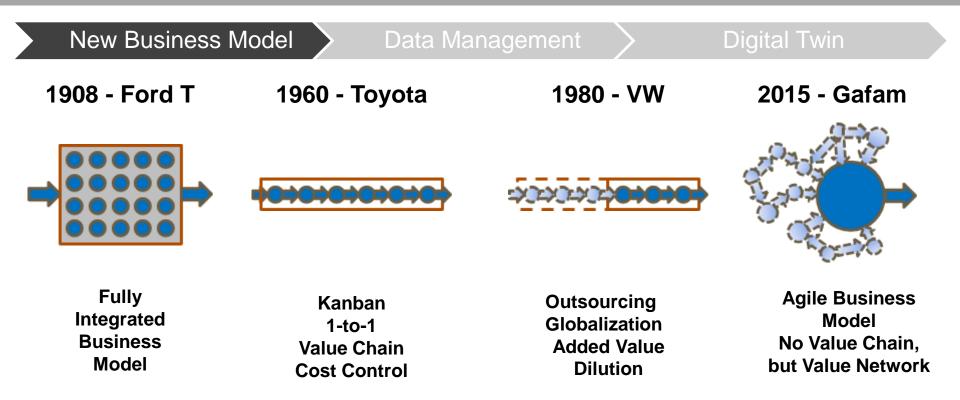
Interoperability is Possible : Japan IVRA and German RAMI 4.0

with Courtesy of Yasuyuki Nishioka, Prof. Dr. Hosei University

Interoperability is Possible : USA OPC Foundation and German RAMI 4.0


- April 2018: Agreement signed in Hannover Fair
- Since 1996, the OPC Foundation has facilitated the development and adoption of the OPC information exchange standards in Microsoft Window operating System.
- OPC Foundation's mission is to maintain interoperability from embedded world to enterprise cloud.
- OPC Foundation serves over 580 members worldwide in the Industrial Automation, IT, IoT, IIoT, M2M, Industrie 4.0, Building Automation, machine tools, pharmaceutical, petrochemical, and Smart Energy sectors.
- IEC-62541: Open Platform Communication Unified Architecture (OPC UA)
- <u>https://opcfoundation.org</u>.

Digitization Standards Exist



Topics	Standards supporting Industrie 4.0
Functional Safety	IEC-61511, IEC-62061
Products Classification	IEC-61360, ISO-13584
Communication Protocols	IEC-61784, IEC-62541
Interfaces Configuration	IEC-61804, IEC-62453
Engineering	IEC-61131, IEC-61987, IEC-62424, IEC-62714, ISO-17506
Digital Factory Reference Model	IEC-62794, IEC-62832
Architecture	IEC-61512, IEC-62850, IEC-62890, IEC-62264
Cybersecurity	IEC-27000 series, IEC 62443

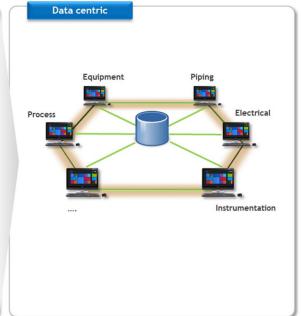
Road Map to Digital Transition

Digitization Business Model

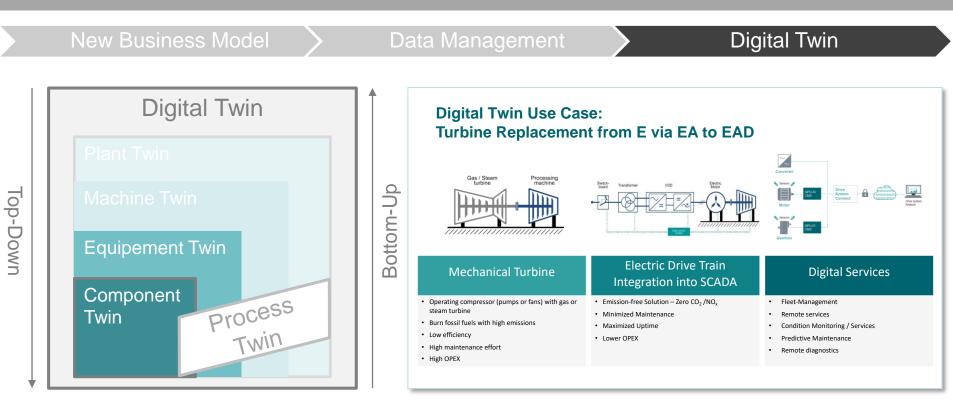
From Value Chain to Value Network PCIC EUROPE

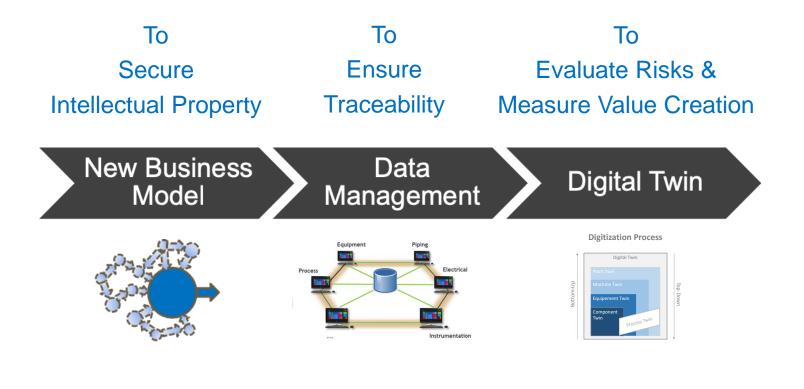
Digitization Data Management

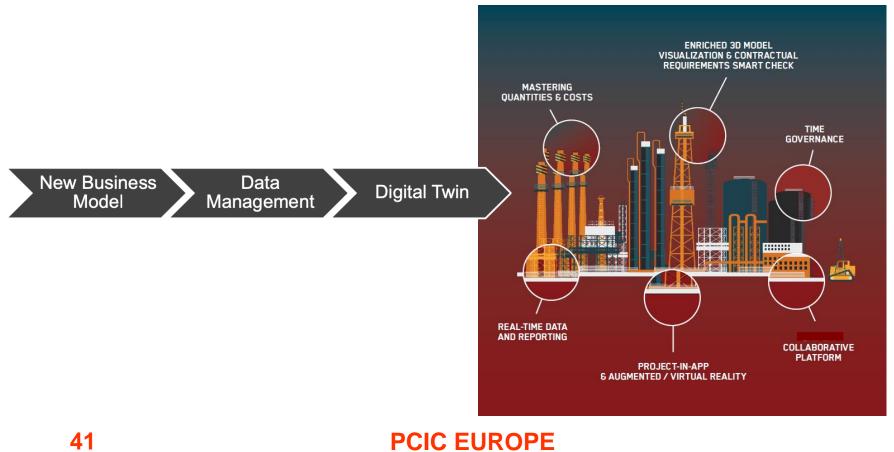
New Business Model


Data Management

Digital Twin


Data extracted from Documents


Documents generated from Data


Digitization Process for Digital Twin

Digitization Rely on Tools & Processes

Questions

